

Proyectos de Generación Híbridos y Herramienta PSS®DE para cálculo de LCoE

Siemens Energy Perú

Siemens Energy Peru

Leading the energy technology market of the country since 1996

Siemens Energy Main Offices

Location: Surquillo, Lima

Siemens Energy Service Center

Location: Lurín, Lima

Siemens Energy Our businesses

Shape our energy landscape through connectivity, resilience, digitalization and decarbonization of the grid

Transformation Grid Technologies of Industry **HV Substations** Hydrogen **HV Products** Compression **SIEMENS** Chargy Electrification, Automation & Grid Stabilization Digitalization a global technology leader for **Grid Digitalization** reliable, affordable, and Industrial Steam Turbines sustainable energy systems **Energy Storage** Waste Heat Recovery **Gas Services** Gas Turbines **Utility Steam Turbines**

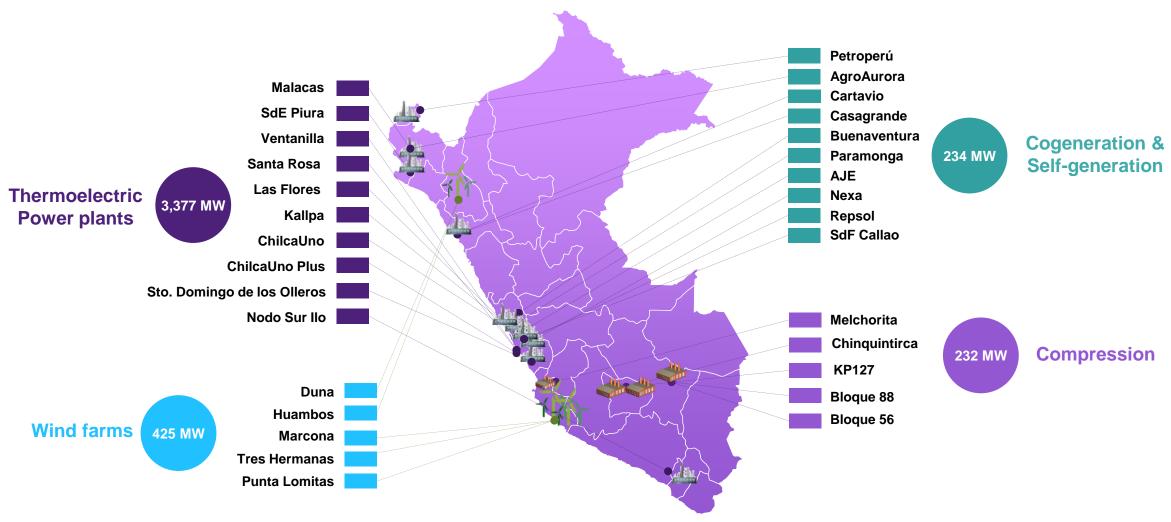
Decarbonize industrial sector through focus on hydrogen and electrification, automation and digitalization (EAD)

Enhance and innovate conventional and renewable power supply and make the most of our energy sources to support the energy transition.

Generators

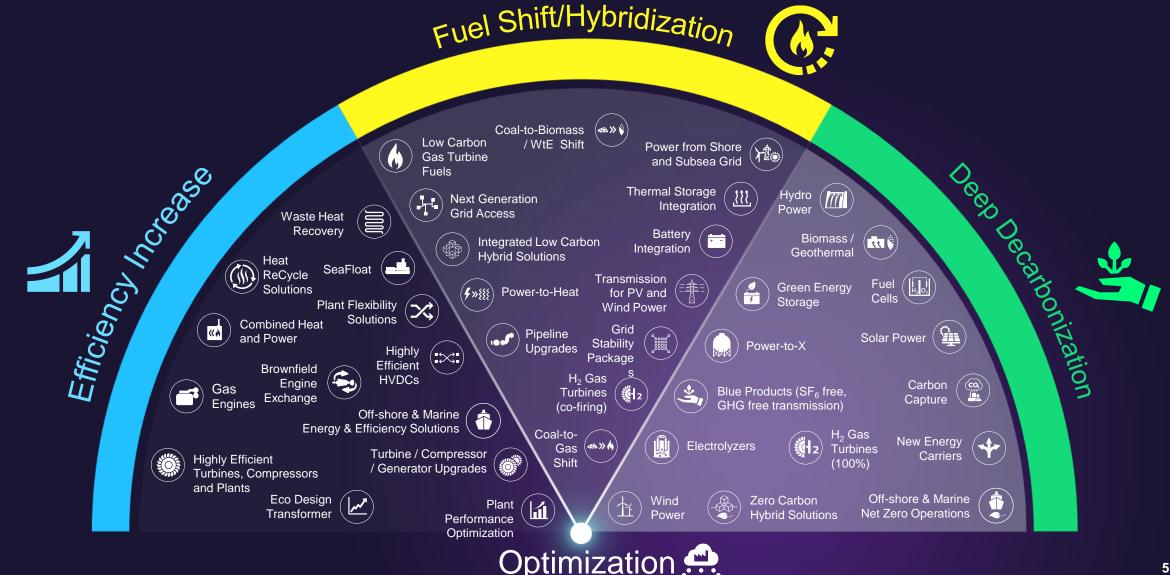
Heat Pumps

Siemens Gamesa Renewable Energy


Onshore Wind Turbines

Offshore Wind Turbines

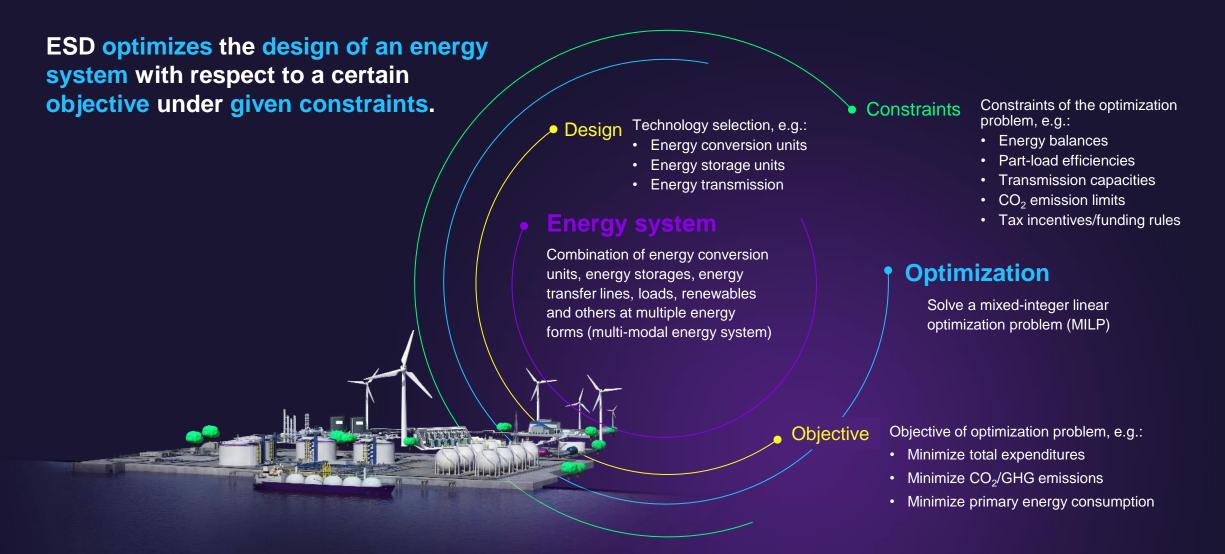
Provide the world's best offshore and onshore wind turbines


Leaders in Peru

with more than 4,300 MW of our power generation technology in operation

Siemens Energy offering

Provide a High range of Technologies toward Energy Transition

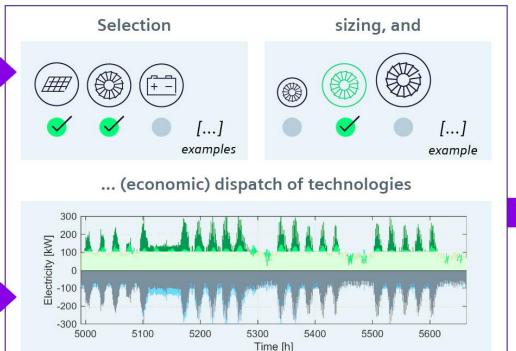

Energy System Design (ESD)

Overview & Examples

What is energy system design (ESD)?

What is Energy System Design (ESD)?

Defining the techno-economic optimal energy system


Technology related input data

- Performance models and parameters
- Component cost models

Site specific input data

- Optimization objective
 - €/\$ CO₂ PE
- Load profiles
- Commodity prices
- Renewable generation profiles
- Climate/weather data
- Technology pre-selection

Energy System Design

Results (output data)

- Technology selection
- Optimal capacities
- Optimal operation schedule
- Economical and ecological data

Exemplary applications of Energy System Design

Hydrogen & PtX

Optimized technology selection and sizing of hydrogen and e-fuel synthesis plants powered by renewable energy.

- H₂ production in Germany
- E-Gasoline production in Chile
- Ammonia production in TX, USA
- E-Methanol production in Egypt

Hybrid Power

Combination of multiple technologies (renewables, energy storages, dispatchable generation) into one optimized energy system.

- Zero Carbon Power Plant in French Guiana
- American Naval Station
- · Remote island grids
- Data Center in Middle East

Industrial Decarbonization

Evaluation of decarbonization potential of existing industrial plants. Developing a solid decarbonization roadmap to make existing infrastructure future-ready.

- Breweries in the EU, Africa
- · Sugar factory in Middle East
- · Pulp & board plant in Poland
- Graphite production in USA
- Zinc and Lead refining in Germany

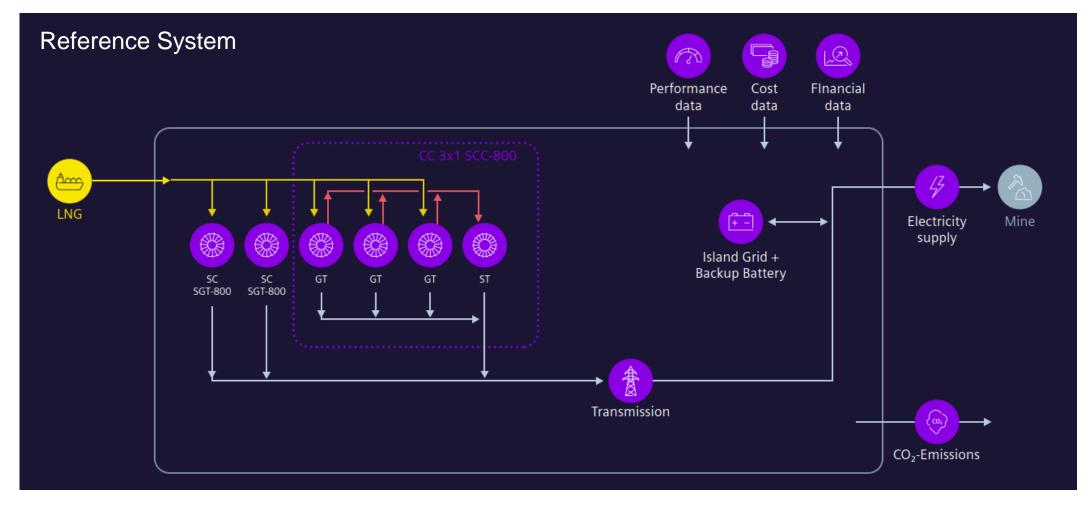
Power Plant Sites

Brownfield Transformation of existing assets like fossil power plants, considering local markets for electricity, district heating and process steam. Develop a robust decarbonization roadmap.

Coal-fired Power Plants in

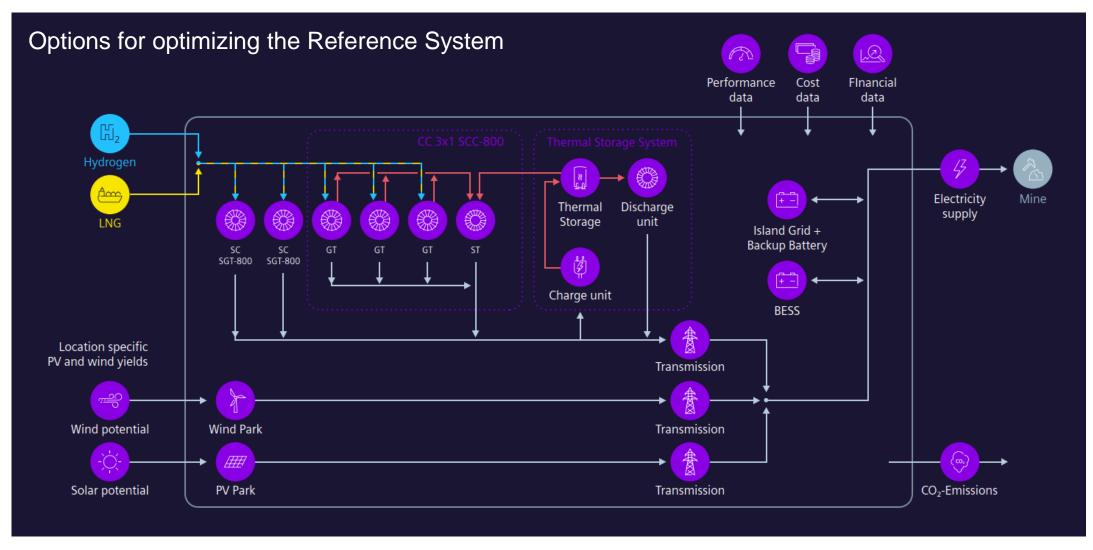
- Germany
- United Kingdom
- Netherlands

What is energy system design (ESD)? **Project Development - Timelines and Activities**



	Scoping and Conceptual Design	Preliminary Engineering	Definition FEED or Basic Engineering	EPC	Start up and Operations
Goals	 Develop Concepts Technology Selection Identify Major Risk / No-Gos High Level Economics Prioritization 	 Confirm Business Case and Feasibility Quantify economics Project Definition 	 Finalize Scope & Executive Plan Basic Engineering De-Risking Contracting 	 Maintain budget & Schedule Achieve mechanical completion and handover. 	 Operation to achieve design performance
Deliverables	 Prel. Design Basis Block Flow Diagram Project Structure ESD Study Levelized Cost 	 Design Basis Process Flow Diagram Single Line Plant Layout HAZOP/HAZID Level 1 Schedule 	 Update FEL-2 deliverables P&IDs Equipment Specs 3D Model Process Data Sheets Schedule 	 Engineering Procurement Construction Construction Management Commissioning 	Training/ start up assistancePerformance test
Cost Estimate	 Class 5 + Approx. +100% /- 50% based on reference data 	 Class 4 Approx. +30% / -30% based on bottom-up budgets 	Class 2Approx. +10% / -10%	■ Firm or Cost	
Commercial	Feasibility	Business Case	EPC Contract / Basis f, FID	Implementation	
Duration	2-4 months	3-6 months	6 – 12 months	24 – 36 months	

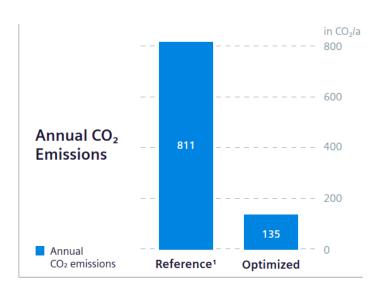
Example: Hybrid power plant design for a mine

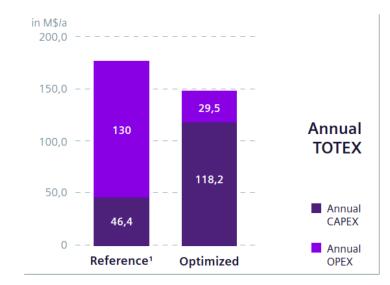


New Mine with electricity demand between 180 and 220 MW and no grid connection in north-western Mexico

Optimization of the Energy System

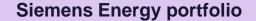
Results of the Optimization of the Energy System


Installed Capacities


The optimized solution has a higher installed capacity because it includes a wind farm, a PV system, and an additional battery storage system

Annual TOTEX and CO₂ emissions

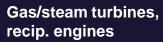
The hybrid power plant produces 82% less CO_2 emissions than the reference plant, at an annual cost that is 16% lower


Quick assessment shows high potential of lowering CO₂ emissions - 82% less CO₂ output compared to reference¹

Optimized solution shows 16% less annual costs, while decreasing operational expenditures by almost 80%

PSS®DE (Power System Simulation – Distributed Energy) leverages techno-economic simulation

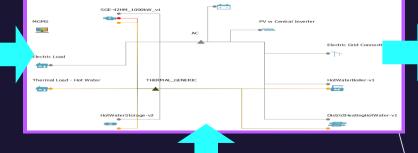
Automation, complex grid tariffs



Loads (electrical, thermal, hydrogen)

Storage solutions (electrical, thermal)

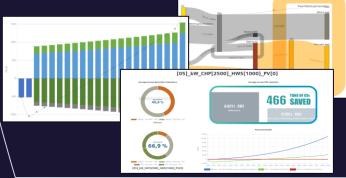
Renewable (Wind, PV, Hydroelectric)



Customer drivers

- Cost pressure / new revenue streams
- Environmental footprint reduction
- Energy reliability / resilience

PSS®DE


Project inputs

- Available resources (irradiation, wind)
- Load requirements (electrical + thermal)
- Business model & financial parameters

Quantified customer benefits

- Annual cost reduction
- Annual decrease in CO₂ emissions
- Financial benefit (LCoE, IRR, RoE)
- Generation breakdown

PSS®DE Software simulation

Energy System Design

Ease decision-making for complex questions for your site

Increase revenue

In-depth analysis of site and technology setup to identify your potential **new revenue streams**

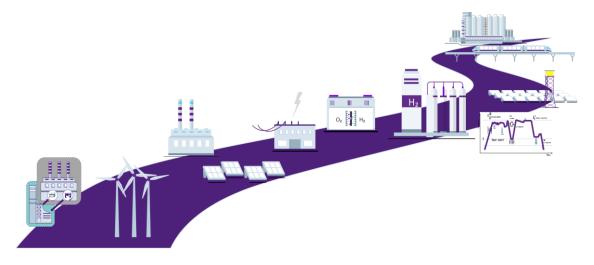
Optimal Solution

Data-based evaluation to tap the **full potential** of your existing assets and execution

CO₂ savings

Usage of innovative bridging technologies to strive for your **NET ZERO**

Tailormade Solution



Creation of the optimal Energy System Design based on your Business Case and needs

Domain know-how

Precise modelling with all-encompassing data as experienced supplier

Sustainable partner

Your single point of contact from ideation over implementation to service

¡Muchas gracias!

Guillermo Diez

Siemens Energy
Desarrollo de negocios – South America

Av. Domingo Orué 971 Surquillo Lima, Perú

Teléfono: +51 993 585 869

guillermo.diez@siemens-energy.com

siemens-energy.com/technical-consultancy